Description
Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少? Input
数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。 第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。(0<=s,t<n) 接下来有m行,每行三个整数,a,b,c,表示存在一种航线,能从城市a到达城市b,或从城市b到达城市a,价格为c。(0<=a,b<n,a与b不相等,0<=c<=1000) Output
Sample Input
5 6 1 0 4 0 1 5 1 2 5 2 3 5 3 4 5 2 3 3 0 2 100 Sample Output
HINT
对于30%的数据,2<=n<=50,1<=m<=300,k=0;
对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;
对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.
题解
题面放的是$[JLOI 2011]$飞行路线,这两道题一毛一样。区别就是$USACO$的数据$k<=20$,并且$s=1$,$t=n$。
建立分层图。
$f[u][t]$表示在节点u时已经免费乘坐t次的最少花费。照样跑最短路。
枚举与$u$相连的所有节点$v$,$w(u,v)$表示权值。
若$t<k$: $$f[v][t+1]=min(f[v][t+1],f[u][t])$$
对于所有:
$$f[v][t]=min(f[v][t],f[u][t]+w(u,v))$$
由于$USACO$数据范围大了点,$STL$的优先队列还过不了,手打了个堆$A$了。
(注意代码中标红的地方二选一)
1 #include 2 #include